A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution

نویسندگان

  • Christine Touma
  • Ruvini Kariawasam
  • Adrian X Gimenez
  • Ray E Bernardo
  • Nicholas W Ashton
  • Mark N Adams
  • Nicolas Paquet
  • Tristan I Croll
  • Kenneth J O'Byrne
  • Derek J Richard
  • Liza Cubeddu
  • Roland Gamsjaeger
چکیده

Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A data-driven structural model of hSSB1 (NABP2/OBFC2B) self-oligomerization

The maintenance of genome stability depends on the ability of the cell to repair DNA efficiently. Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. While the role of human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) in the repair of double-stranded breaks has been well established, we have re...

متن کامل

The hSSB1 orthologue Obfc2b is essential for skeletogenesis but dispensable for the DNA damage response in vivo.

Human single-stranded DNA-binding protein 1 (hSSB1), encoded by OBFC2B, was recently characterized as an essential factor for the initiation of DNA damage checkpoints and the maintenance of genomic stability. Here, we report that loss of Obfc2b in mice results in perinatal lethality characterized by growth delay and skeletal abnormalities. These abnormalities are associated with accumulation of...

متن کامل

hSSB1 (NABP2/OBFC2B) is regulated by oxidative stress

The maintenance of genome stability is an essential cellular process to prevent the development of diseases including cancer. hSSB1 (NABP2/ OBFC2A) is a critical component of the DNA damage response where it participates in the repair of double-strand DNA breaks and in base excision repair of oxidized guanine residues (8-oxoguanine) by aiding the localization of the human 8-oxoguanine glycosyla...

متن کامل

hSSB1 (NABP2/ OBFC2B) is required for the repair of 8-oxo-guanine by the hOGG1-mediated base excision repair pathway

The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-...

متن کامل

Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks

Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016